Contact Jim on 01226 763124  or   milner44@btinternet.com
Why and how? News
Home Geometric gallery Maquettes Fractal gallery Maths gallery Figurative gallery Delivery and Installation


Möbius Egg II - 2013 - [sold]

A unique geometric sculpture, hand-made from beautiful fine-grained sandstone quarried near Bradford,Yorkshire.

Geometric stone sculpture Möbius egg II Geometric stone sculpture Möbius egg II Geometric stone sculpture Möbius egg II

A twisted torus with a triangular cross-section. Height : 12½", Width : 17" Depth : 5½", supported by a 25mm stainless steel rod from a hidden concrete foundation.

Geometric stone sculpture Möbius egg II Geometric stone sculpture Möbius egg II Geometric stone sculpture Möbius egg II

Möbius Egg II mounted on a 44" twisted obelisk

Geometric stone sculpture Möbius egg II Geometric stone sculpture Möbius egg II

Geometric stone sculpture Möbius egg II


The outline of the egg is an example of a Euclidean four point compass and straight edge egg construction.

Many more such constructions are to be found in Robert Dixon’s marvellous book Mathographics (1).

The outline of both the egg and the egg shape cut out from it are Euclidean constructions of my own.

The twisting nature of the inside of the egg owes much to the mathematician August Ferdinand Möbius who first examined this strange form in the nineteenth century and gave us the Möbius strip.

Take a strip of paper, twist it through 180°, turn it round into a torus and glue it together. Were you to trace a line along the middle of the strip, you would find that this strip of paper, which appears to have two surfaces, has in fact got only one continuous surface. Similarly, the Möbius strip has only one edge, not two as one might suppose.

The Möbius strip is a conundrum – what are the implications of warping a plane through three dimensions to our understanding of planes and dimensions? This series of Möbius sculptures of mine explores the conundrum further by starting to examine similar warpings of three dimensional cross-sections through space.



(1) DIXON, R. 1987. Mathographics. Basil Blackwell Ltd, Oxford, UK. This book was published again by Dover Publicatios, Inc., New York, in 1991.



To read more about Möbius strips and solids, and to see four short video demonstrations of their properties, click the images below to follow the link:

Link to mobius strips and solids page



© JIM MILNER 2025 • milner44@btinternet.com • 01226 763124